Collating the coins

ARRANGE THREE pennies and two dimes in a row, alternating the coins as shown. The problem is to change their positions to those shown at the bottom of the illustration in the shortest possible number of moves. A move consists of placing the tips of the first and second fingers on any two touching coins, one of which must be a penny and the other a dime, then sliding the pair to another spot along the imaginary line shown in the illustration. The two coins in the pair must touch at all times. The coin at left in the pair must remain at left; the coin at right must remain at right. Gaps in the chain are allowed at the end of any move except the final one. After the last move the coins need not be at the same spot on the imaginary line that they occupied at the start.

If it were permissible to shift two coins of the same kind, the puzzle could be solved easily in three moves: slide 1, 2 to left, fill the gap with 4, 5, then move 5, 3 from right to left end. But with the proviso that each shifted pair must include a dime and penny it is a baffling and pretty problem.

Tags: , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: